1171.70032

CASE FILE

THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

IDENTIFICATION OF TWO-PLAYER SITUATIONS WHERE COOPERATION

IS PREFERABLE TO USE OF PERCENTILE GAME THEORY

by

John E. Walsh and Grace J. Kelleher

Technical Report No. 77
Department of Statistics THEMIS Contract

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

Department of Statistics
Southern Methodist University
Dallas, Texas 75222

THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

IDENTIFICATION OF TWO-PLAYER SITUATIONS WHERE COOPERATION IS PREFERABLE TO USE OF PERCENTILE GAME THEORY

by

John E. Walsh and Grace J. Kelleher

Technical Report No. 77
Department of Statistics THEMIS Contract

July 30, 1970

Research sponsored by the Office of Naval Research
Contract N00014-68-A-0515
Project NR 042-260

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Southern Methodist University

IDENTIFICATION OF TWO-PLAYER SITUATIONS WHERE COOPERATION IS PREFERABLE TO USE OF PERCENTILE GAME THEORY

John E. Walsh*
Southern Methodist University

Grace J. Kelleher
University of Texas at Arlington

ABSTRACT

Considered is descrete two-person game theory where the players choose their strategies separately and independently. A generally applicable form of percentile game theory, using mixed strategies, has been developed where player i can select a $100\alpha_{\rm i}$ percentile criterion and determine a solution that is optimum to him for this criterion (i = 1, 2). For example, median game theory occurs when the players decide to select $\alpha_1 = \alpha_2 = 1/2$. The only requirement for usability is that, separately, each player can rank the outcomes for the game (pairs of payoffs, one to each player) according to their desirability to him. When cooperation can occur, however, cooperative choice of strategies can have advantages compared to a specified use, or class of uses, of percentile game theory (a use is defined by the values of the two percentiles). This paper identifies situations where cooperation is definitely preferable, for two types of cooperation. No side payments are made for one type of cooperation. This type can occur for any situation where percentile game theory is applicable. Side payments can be made for the other type of cooperation. This type occurs for situations where all payoffs can be expressed in a common unit and satisfy arithmetical operations. Rules are given for deciding when cooperation is definitely advantageous. Cooperation is always definitely preferable when $\alpha_1 + \alpha_2 > 1$.

^{*} Research partially supported by Mobil Research and Development Corporation. Also associated with ONR Contract N0014-68-A-0515 and NASA Grant NGR 44-007-028.

INTRODUCTION AND DISCUSSION

A generally applicable form of discrete two-person game theory based on percentile considerations has been developed (ref. 1) for situations where the players select their strategies separately and independently. The payoffs can be of almost any nature and some of them may not even be numerical. The pairs of payoffs, one to each player, that occur for the various combinations of strategy choices are the possible outcomes for the game. These outcomes, and the preferences of the players, are such that separately each player is able to rank the outcomes according to their relative desirability to him (including equal desirability as a possibility). The two rankings do not necessarily bear any relationship to each other.

For percentile game theory, player i selects a percentile $100\alpha_1$ and wants to play the game optimally with respect to this percentile (i=1,2). A largest level of desirability (which corresponds to one or more outcomes O_1) occurs for the i-th player such that he can assure, with probability at least α_1 , that an outcome with at least this desirability is obtained. This can be done simultaneously by both players. A method for determining O_1 and an optimum (mixed) strategy for each player is given in ref. 1. The Appendix contains an outline of this method. Incidentally, median game theory occurs for the special case where $\alpha_1 = \alpha_2 = 1/2$.

It is to be noted that a ranking of the outcomes by a player not only considers the payoffs to him but also the corresponding payoffs to the other player. Thus, to the player doing the ranking, his ranking shows

the relative desirability of what can occur for the game, including what occurs for the other player. Hence, for separate and independent choice of strategies, and given values for α_1 and α_2 , the optimum solutions developed in ref. 1 are as good as can be obtained on this basis.

The usefulness of the percentile approach (for specified α_1 and α_2) is not so evident when the players can cooperate in selection of strategies. With cooperation, they may be able to obtain a game outcome that, to both, is preferable to use of solutions that are optimum when there is no cooperation. This paper is concerned with identification of cases where suitable use of cooperation is definitely preferable to use of percentile game theory. In making this identification, the preference rankings of the game outcomes are considered to be known for both players. Of course, the values of α_1 and α_2 can affect this preference. In fact, cooperation is found to always be definitely advantageous, when $\alpha_1 + \alpha_2 > 1$. Some results on cooperation have already been developed for $\alpha_1 = \alpha_2 = 1/2$ and are given in ref. 2.

Two types of cooperation are considered. For the first type, no payments from one player to the other are made (no side payments). Cooperation of the first type can occur for virtually all situations (all situations where percentile game theory is applicable).

Cooperation of the second type can involve side payments but imposes a condition on the payoffs. That is, for side payments to be meaningful, the totality of payoffs should be expressible in a common unit and satisfy arithmetical operations (the operations of addition and subtraction, at the least).

For both types of cooperation, a restriction is sometimes imposed on the allowable freedom in ranking of the outcomes. This restriction is oriented toward situations where the players behave in a competitive manner. Specifically, for a given player, relative desirability is required to be a nondecreasing function of the desirability level of his payoff when the desirability level of the payoff for the other player (to the other player) is nonincreasing. This restriction would seem acceptable for any situation of practical interest where the players behave competitively and, separately, each player is able to rank his payoffs according to increasing desirability level (to him).

Let (p_1, p_3) denote an overall "outcome" for the game where, when side payments can be made, p_i is the overall amount received by player i, (i=1,2). Thus, the values of p_1 and p_3 are influenced by a payment made from one player to the other. Also, let $(p_1^{(g)}, p_3^{(g)})$ denote an actual outcome of the game, as determined by the payoff matrices. Only the $(p_1^{(g)}, p_3^{(g)})$ are compared for the first type of cooperation. All (p_1, p_3) such that $p_1 + p_3$ equals $p_1^{(g)} + p_3^{(g)}$, for some game outcome, are compared (and can possibly occur) for the second type of cooperation. The $(p_1^{(g)}, p_3^{(g)})$ are, of course, included in the totality of the (p_1, p_3) .

Cooperation is considered to be definitely advantageous, compared to optimum use of percentile game theory (with given α_1 , α_2), when both players can gain by agreeing on an achievable (p_1, p_2) . That is, for the first type of cooperation, they agree to select strategies so that a determined game outcome is obtained. For the second type of cooperation, the agree to choose strategies and make side payments so that a determined overall outcome occurs.

A rule for deciding when cooperation is definitely advantageous is given in the next section. Some implications of this rule, for competitive games and for games in general, are considered in the final section.

GENERAL RULE

Let the totality of game outcomes $(p_1^{(g)}, p_2^{(g)})$ be ranked according to increasing desirability separately by each player. There is a smallest subset $S_i(\alpha_i)$ such that all other game outcomes are less desirable to player i than those of this subset and also an outcome of this subset can be assured with probability at least α_i by player i, (i = 1, 2). Statement of a method that can be used to determine $S_i(\alpha_i)$ is given in ref. 1. An outline of this method occurs in the Appendix. It is to be noted that $S_1(1/2)$ and $S_2(1/2)$ can differ slightly from the subsets S_1 and S_{11} of ref. 2.

The subsets $S_1(\alpha_1)$ and $S_2(\alpha_2)$ provide the basis for a general rule that can be used to decide when cooperation is definitely preferable to percentile game theory (with α_1 and α_2 specified).

General Rule: Suitable use of cooperation is definitely preferable for both players when an achievable outcome (p_1, p_2) occurs that is at least as desirable to player 1 as one or more of the game outcomes of $S_1(\alpha_1)$ and also is at least as desirable to player 2 as one or more of the game outcomes of $S_2(\alpha_2)$.

This rule follows from the consideration that an achievable (overall) outcome with at least the minimum level of desirability for both $S_1(\alpha_1)$ and $S_2(\alpha_2)$ can be obtained with certainty. For player i, optimum use of

the percentile approach only assures that an outcome with desirability level at least the minimum for $S_i(\alpha_i)$ is obtained with probability at least α_i , (i = 1, 2).

The achievable (p_1, p_2) for the first type of cooperation are the (p_1, p_2, p_3) . All (p_1, p_2) that satisfy $p_1 + p_2 = p_1^{(g)} + p_2^{(g)}$, for some game outcome, are achievable for the second type of cooperation.

Suitable use of cooperation is definitely advantages, for both types of cooperation, when the same game outcome occurs in both S_1 (α_1) and S_2 (α_2) . This always happens, as shown in the next section, when $\alpha_1 + \alpha_2 > 1$. However, S_1 (α_1) and S_2 (α_2) need not have any game outcomes in common when $\alpha_1 + \alpha_2 \leq 1$. Of course, the number of outcomes in S_1 (α_1) is a nondecreasing function of α_1 , so situations can occur where cooperation is not definitely preferable for given α_1 , α_2 but is definitely preferable for sufficient increase in α_1 and/or α_2 (even though $\alpha_1 + \alpha_2 \leq 1$ in all cases). Also, the minimum level of desirability for outcomes of S_1 (α_1) is a non-increasing function of α_1 and situations can occur where the players do not want to use α_1 and α_2 values which result in $\alpha_1 + \alpha_2 > 1$.

A game outcome that is common to both S_1 (α_1) and S_2 (α_3) must occur if the first type of cooperation is to be definitely preferable. There is, however, a broad class of situations where the second type of cooperation is preferable, even though $\alpha_1 + \alpha_2 \le 1$. Some consideration of situations where the second type is preferable occurs in the next section.

IMPLICATIONS OF RULE

First, consider verification of the statement that cooperation is always definitely preferable when α_1 + α_2 > 1. This follows from

THEOREM 1. If $S_1(\alpha_1)$ and $S_2(\alpha_2)$ have no game outcomes in common, then $\alpha_1 + \alpha_2 \le 1$.

PROOF: An outcome of $S_i(\alpha_i)$ can be assured with probability at least α_i by player i, (i = 1, 2). This implies that the complement of $S_1(\alpha_1)$ in the totality of game outcomes, denoted by $\overline{S}_1(\alpha_1)$, can be assured by player 2 with probability at most $1 - \alpha_1$. However, $\overline{S}_1(\alpha_1)$ contains $S_2(\alpha_2)$, which implies that $1 - \alpha_1 \ge \alpha_2$, or $\alpha_1 + \alpha_2 \le 1$.

This theorem holds, in particular, when α_1 and α_2 are attainable values (ref. 1). A value $\alpha_i^{(0)}$ is attainable for α_i if player i cannot assure an outcome of $S_i^{(0)}$ with probability greater than $\alpha_i^{(0)}$. When a specified value for α_i is not attainable, the value actually used for α_i is the smallest of the attainable values that exceeds the specified value. It is advisable to use attainable values for α_1 and α_2 . Then, a true situation of $\alpha_1^{(0)} + \alpha_2^{(0)} > 1$ does not occur when $\alpha_1 + \alpha_2 \le 1$ for the specified values.

Next, consider the advantages of cooperation for games that are "competitive." Here, a game is considered to be competitive if and only if the totality of game outcomes can be arranged in a sequence so that the payoffs for player 1 have nondecreasing desirability (to him) and also the payoffs for player 2 have nonincreasing desirability level (to him). This generalizes the concept of competitive games given in ref. 3 for the case of payoffs that are numbers.

For a competitive game and the restriction imposed for compteitive behavior of the players, $S_1(\alpha_1)$ and $S_2(\alpha_2)$ have no outcomes in common when $\alpha_1 + \alpha_2 < 1$ for attainable values. This follows from

THEOREM 2. Let $\alpha_1^{(0)}$ and $\alpha_2^{(0)}$ be attainable values for α_1 and α_2 , respectively. When the restriction for competitive behavior holds, the game is competitive, and $\alpha_1^{(0)} + \alpha_2^{(0)} < 1$, then the subsets $S_1(\alpha_1^{(0)})$ and $S_2(\alpha_2^{(0)})$ are mutually exclusive and there is at least one game outcome that does not belong to either of them.

<u>PROOF:</u> If this were not true, the restriction on ranking outcomes due to the competitive behavior would imply that the union of S_1 (α_1 (°)) and S_2 (α_2 (°)) is the totality of the game outcomes. Then, S_2 (α_2 (°)) contains \overline{S}_1 (α_1 (°)). Also, $1-\alpha_1$ (°) is an attainable value for α_2 , since player 2 can assure an outcome of \overline{S}_1 (α_1 (°)) with probability at least $1-\alpha_1$ (°) but not in excess of $1-\alpha_1$ (°) (because player 1 can assure an outcome of S_1 (α_1 (°)) with probability at least α_1 (°) but not in excess of α_1 (°)). This, combined with the relationship between S_2 (α_2 (°)) and \overline{S}_1 (α_1 (°)), implies that α_2 (°) $\geq 1-\alpha_1$ (°), or α_1 (°) $+\alpha_2$ (°) ≥ 1 , a contradiction.

Thus, for competitive behavior, a competitive game, and use of attainable $\alpha_{\bf i}$, the subsets $S_1(\alpha_1)$ and $S_2(\alpha_2)$ necessarily have at least one outcome in common when $\alpha_1 + \alpha_2 > 1$ and necessarily are mutually exclusive when $\alpha_1 + \alpha_2 < 1$. There may, or may not, be any outcomes in common when $\alpha_1 + \alpha_2 = 1$.

Occurrence of a common outcome for $S_1(\alpha_1)$ and $S_2(\alpha_2)$ is not necessary for definite preference of the second type of cooperation. For example, cooperation often happens to be preferable in the somewhat common situation where an increase of zero or more in the payoff received by a player, combined with addition of at most this amount (negative amounts possible) to the payoff for the other player, yields another outcome that is at least

as desirable to him. Here, the payoffs are expressed in the same unit and justification for the preceding assertion follows from

THEOREM 3. Suppose that, for any outcome $(p_1^{(g)}, p_2^{(g)})$, a modification $(p_1^{(g)} + h_1, p_2^{(g)} + h_2)$, to some achievable outcome, is as least as desirable to player i as $(p_1^{(g)}, p_2^{(g)})$ when $h_1 \ge 0$ and the other h is at most equal to h_1 , (i = 1, 2). Then, if there exists an outcome $(p_1^{(g)}, p_2^{(g)})$ of $S_1^{(g)}$, an outcome $(p_1^{(g)}, p_2^{(g)})$ of $S_2^{(g)}$, and a game outcome $(p_1^{(g)}, p_2^{(g)})$ such that $p_2^{(g)} - p_2^{(g)} \ge p_1^{(g)} - p_1^{(g)}$ and $p_1^{(g)} + p_2^{(g)}$ such that $p_2^{(g)} - p_2^{(g)} \ge p_1^{(g)} - p_1^{(g)}$ and is definitely advantageous.

 $\underline{\text{PROOF}} \colon \text{ Let } p_1 \text{'''} \text{ and } p_2 \text{'''} \text{ be expressed in the form}$

$$p_1''' = p_1' + a = p_1'' + b, p_2''' = p_2' + A = p_2'' + B.$$

The conditions of the theorem imply that

$$a + b \ge 0$$
, $A + B \ge 0$, $B - A + a - b \ge 0$.

Suppose that the players use $(p_1^{""}, p_3^{""})$ and that player 2 makes a side payment of C = (b + B - a - A)/4 to player 1. The result is $(p_1^{""} + C, p_3^{""} - C) = [p_1^{"} + (3a + b + B - A)/4, p_3^{"} + (3b - B + a + A)/4,$ with a nonnegative amount added to $p_1^{"}$ and at most this amount added to $p_2^{"}$, since

$$3a + b + B - A \ge 3a + b + b - a = 2(a + b) \ge 0$$
,

$$(3a + b + B - A) - (3b - B + a + A) = 2(B - A + a - b) \ge 0.$$

Likewise,

$$(p_1"" + C, p_2"" - C) = [p_1" + (3A + b + B - a)/4, p_2" + (3B - b + a + A)/4],$$
 where a nonegative amount is added to p_2 " and at most this amount is added to p_1 ". Thus, from the supposition of the theorem, the achievable outcome

 $\left(p_1\text{'''}+C,\;p_2\text{'''}-C\right)$ is at least as desirable to player 1 as $\left(p_1\text{'},\;p_2\text{'}\right)$ of $S_1\left(\alpha_1\right)$ and as least as desirable to player 2 as $\left(p_1\text{''},\;p_2\text{''}\right)$ of $S_2\left(\alpha_2\right)$.

APPENDIX

The same results are applicable to each player and are stated for player i. Here the players select strategies separately and independently, and the only outcomes considered are game outcomes. A way of determining the largest level of desirability (corresponds to one or more outcomes O_i) that player i can assure with probability at least α_i is outlined. Then, a method for determining an optimum strategy for player i is described. These procedures are based on a marking of the payoff positions in the matrix for player i. A more detailed statement of these methods is given in ref. 1.

First, mark the position(s) in the payoff matrix for player i of the outcome(s) with the highest level of desirability to him. Next, also mark the position(s) of the outcome(s) with the next to highest level of desirability. Continue this marking, according to decreasing level of desirability, until the first time that player i can assure the occurrence of an outcome in the marked set with probability at least α_i . The last (and lowest) level desirability for which a marking ultimately occurred is the highest level that can be assured by player i with probability at least α_i , with α_i being the outcome(s) marked last. The set α_i consists of the outcomes whose desirability level, to player i, is at least as great as the level for α_i .

The method for determining whether a set of marked outcomes can be assured with probability at least α_i consists in first replacing all of their positions (marked) in the matrix for player i by unity and all other positions by zero. The resulting matrix of ones and zeroes is considered to be for player i in a zero-sum game with an expected-value basis. Player i can assure an outcome of the marked set with probability at least α_i if and only if the value of this game, for him, is at least α_i .

Now, consider determination of an optimum strategy for player i. Use the matrix marking that, ultimately, resulted in the smallest marked set (according to the marking procedure) such that an outcome of this set can be assured by player i with probability at least α_i . Replace the marked positions by unity and the others by zero. Treat the resulting matrix as that for player i in a zero-sum game with an expected-value basis. An optimum strategy for player i in this game is α_i -optimum for him.

REFERENCES

- Walsh, John E., "Generally applicable two-person percentile game theory." Submitted to Opsearch.
- Walsh, John E., "Identification of situations where cooperation is preferable to use of median game theory." Opsearch, Vol. 7, No. 2, June 1970, pp. 89-95.
- 3. Walsh, John E., "Discrete two-person game theory with median payoff criterion," Opsearch, Vol. 6 (1969), pp. 83-97. Also see "Errata," Opsearch, Vol. 6 (1969), p. 216.

Security Classification

DOCUMENT CONTROL DATA - R & D			
Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION	
SOUTHERN METHODIST UNIVERSITY		UNCLASSIFIED	
		2b. GROUP	
		UNCLASSIFIED	
3 REPORT TITLE			
Identification of two-player situations where cooperation is preferable to use of			
percentile game theory.			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Technical Report			
5. AUTHOR(S) (First name, middle initial, last name)			
John E. Walsh			
Grace J. Kelleher			
6 REPORT DATE	78. TOTAL NO. OF PAGES 7b. NO. OF REFS		
July 30, 1970	11		3
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)		
N00014-68-A-0515			
b. PROJECT NO.			
NR 042-260	77		
c.	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)		
d.			
10. DISTRIBUTION STATEMENT			
This document has been approved for public release and sale; its distribution is			
unlimited. Reproduction in whole or in part is permitted for any purpose of the			
United States Government.			
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY		
	Office of Naval Research		

3. ABSTRACT

Considered is descrete two-person game theory where the players choose their strategies and separately and independently. A generally applicable form of percentile game theory, using mixed strategies, has been developed where player i can select a 100a, percentile criterion and determine a solution that is optimum to him for this criterion (i=1,2). For example, median game theory occurs when the players decide to select $\alpha_1=\alpha_2=1/2$. The only requirement for usability is that, separately, each player can rank the outcomes for the game (pairs of payoffs, one to each player) according to their desirability to him. When cooperation can occur, however, cooperative choice of strategies can have advantages compared to a specified use, or class of uses, of percentile game theory (a use is defined by the values of the two percentiles). This paper identifies situations where cooperation is definitely preferable, for two types of cooperation. No side payments are made for one type of cooperation. This type can occur for any situation where percentile game theory is applicable. Side payments can be made for the other type of cooperation. This type occurs for situations where all payoffs can be expressed in a common unit and satisfy arithmetical operations. Rules are given for deciding when cooperation is definitely advantageous. Cooperation is always definitely preferable when $\alpha_1 + \alpha_2 > 1$.

DD FORM (PAGE 1)

UNCLASSIFIED

UNCLASSIFIED BASIC DISTRIBUTION LIST FOR SIGNAL ANALYSIS STATISTICS

- 1 University of California
 Operations Research Center
 Institute of Engineering Research
 Berkeley, California 94720
 ATTN: Prof. R. E. Barlow
- 1 University of California
 Department of Statistics
 Berkeley, California 94720
 ATTN: Prof. P. J. Bickel
- 1 University of California, San Diego
 Department of Mathematics
 P. O. Box 109
 La Jolla, California 92038
 ATTN: Prof. M. Rosenblatt
- 1 University of Chicago
 Department of Statistics
 Chicago, Illinois 60637
 ATTN: Prof. W. Kruskal
- 1 Columbia University
 Department of Civil Engineering
 and Engineering Mechanics
 New York, New York 10027
 ATTN: Prof. C. Derman
- 1 Columbia University
 Department of Mathematics
 New York, New York 10027
 ATTN: Prof. H. Robbins
- 1 University of Connecticut
 Department of Statistics
 Storrs, Connecticut 06268
 ATTN: Prof. H. O. Posten
- 1 Cornell University
 Department of Operations Research
 Ithaca, New York 14850
 ATTN: Prof. R. E. Bechhofer

- 1 Cornell University
 Department of Mathematics
 White Hall
 Ithaca, New York 14850
 ATTN: Prof. J. Kiefer
- 20 Defense Documentation Center Cameron Station Alexandria, Virginia 22314
- 1 Defense Logistics Studies
 Information Exchange
 Army Logistics Management Center
 Fort Lee, Virginia 23801
- 1 Florida State University Department of Statistics Tallahassee, Florida 32306 ATTN: Prof. R. A. Bradley
- 1 Florida State University
 Department of Statistics
 Tallahassee, Florida 32306
 ATTN: Prof. I. R. Savage
- 1 Program in Logistics The George Washington University 707 22nd Street, N.W. Washington, D.C. 20037 ATTN: Dr. W. H. Marlow
- 1 University of Georgia
 Department of Statistics
 Athens, Georgia 30601
 ATTN: Prof. R. E. Bargmann
- 1 Harvard University
 Department of Statistics
 Cambridge, Massachusetts 02139
 ATTN: Prof. W. G. Cochran

- 1 Institute for Defense Analyses
 Communications Research Division
 von Neumann Hall
 Princeton, New Jersey 09541
- 1 Israel Institute of Technology
 Technion
 Haifa, ISRAEL
 ATTN: Prof. P. Naor
- 1 The Johns Hopkins University
 Department of Statistics
 34th & Charles Streets
 Baltimore, Maryland 21218
 ATTN: Prof. G. S. Watson
- 1 Naval Applied Science Laboratory
 Technical Library, Code 222
 Flushing & Washington Avenues
 Brooklyn, New York 11251
- 1 Library
 Naval Electronics Laboratory
 Center
 San Diego, California 92152
- 1 Naval Ordnance Station Louisville, Kentucky 40214
- 1 Technical Library Naval Ordnance Station Indian Head, Maryland 20640
- 1 Bureau of Naval Personnel
 Navy Department
 Technical Library
 Washington, D. C. 20370
 STOP 82
- 1 Library, Code 0212
 Naval Postgraduate School
 Monterey, California 93940
- 6 Technical Information Center Naval Research Laboratory Washington, D.C. 20390
- 1 Naval Ship Engineering Center,
 Philadelphia Division
 Technical Library
 Philadelphia, Pennsylvania 19112

- 1 Applied Mathematics Laboratory
 Naval Ships Research Development
 Center
 Washington, D.C. 20007
 ATTN: Mr. Gene H. Gleissner
- 1 Naval Undersea Research and
 Development Center, San
 Clemente Island
 3202 East Foothill Boulevard
 Pasadena, California 91107
 Technical Library
- 1 Department of the Navy
 Naval Weapons Center
 China Lake and Corona Laboratories
 China Lake, California 93555
 ATTN: Dr. Robert C. Spear
- 1 Naval Ships Systems Command 0311, Room 3215 Washington, D.C. 20360 ATTN: Miss B. O. Orleans
- 1 New York University
 Institute of Mathematical Sciences
 New York, New York 10453
 ATTN: Prof. W. M. Hirsch
- 1 New York University
 Department of Industrial Engineering
 and Operations Research
 Bronx, New York 10453
 ATTN: Prof. J. H. K. Kao
- 1 University of North Carolina
 Department of Statistics
 Chapel Hill, North Carolina 27514
 ATTN: Prof. W. L. Smith
- 1 University of North Carolina
 Department of Statistics
 Chapel Hill, North Carolina 27514
 ATTN: Prof. M. R. Leadbetter
- 1 Director
 Office of Naval Research
 Branch Office
 1030 East Green Street
 Pasadena, California 91101
 ATTN: Dr. A. R. Laufer

- 1 Office of Naval Research San Francisco Area Office 1076 Mission Street San Francisco, California 94103
- 1 Director
 Office of Naval Research,
 Branch Office
 219 South Dearborn Street
 Chicago, Illinois 60604
 ATTN: Dr. A. R. Dawe
- 1 Director
 Office of Naval Research
 Branch Office
 495 Summer Street
 Boston, Massachusetts 02210
 ATTN: Dr. A. L. Powell
- 1 Office of Naval Research
 New York Area Office
 207 West 24th Street
 New York, New York 10011
 ATTN: Dr. J. Laderman
- 6 Director, Naval Research Laboratory ATTN: Library, Code 2029 (ONRL) Washington, D.C. 20390
- 1 Systems Analysis Division Room BE760, Pentagon Washington, D.C. 20350 ATTN: Mr. A. S. Rhodes, Op-964
- l Princeton University
 Department of Statistics
 Princeton, New Jersey 08540
 ATTN: Prof. J. W. Tukey
- 1 Purdue University
 Department of Statistics
 Lafayette, Indiana 47907
 ATTN: Prof. S. S. Gupta
- 1 Purdue University
 Department of Statistics
 Lafayette, Indiana 47907
 ATTN: Prof. H. Rubin

- 1 Rice University
 Department of Mathematical Sciences
 Houston, Texas 77001
 ATTN: Prof. R. M. Thrall
- 1 Rutgers The State University
 Statistics Center
 New Brunswick, New Jersey 08903
 ATTN: Prof. H. F. Dodge
- 1 University of Sheffield
 Department of Probability
 and Statistics
 Sheffield 10, ENGLAND
 ATTN: Prof. J. Gani
- 1 Southern Methodist University
 Department of Statistics
 Dallas, Texas 75222
 ATTN: Prof. D. B. Owen
- 1 Stanford University
 Department of Statistics
 Stanford, California 94305
 ATTN: Prof. T. W. Anderson
- 1 Stanford University
 Department of Statistics
 Stanford, California 94305
 ATTN: Prof. H. Chernoff
- 1 Stanford University
 Department of Operations Research
 Stanford, California 94305
 ATTN: Dr. D. L. Iglehart
- 1 Stanford University
 Department of Mathematics
 Stanford, California 94305
 ATTN: Prof. S. Karlin
- l Stanford University
 Department of Operations Research
 Stanford, California 94305
 ATTN: Prof. E. Parzen
 - 1 Stanford University
 Department of Statistics
 Stanford, California 94305
 ATTN: Prof. H. Solomon

- 1 Stanford University
 Department of Operations Research
 Stanford, California 94305
 ATTN: Prof. A. F. Veinott, Jr.
- 3 Statistics and Probability
 Program
 Office of Naval Research
 Washington, D.C. 20360
- 1 Texas A & M University Director, Institute of Statistics College Station, Texas 77843 ATTN: Prof. H. O. Hartley
- 1 University of Washington Department of Mathematics Seattel, Washington 98105 ATTN: Prof. Z. W. Birnbaum

- 1 University of Wisconsin
 Department of Statistics
 Madison, Wisconsin 53706
 ATTN: Prof. G. E. P. Box
- 1 Yale University
 Department of Statistics
 New Haven, Connecticut 06520
 ATTN: Prof. F. J. Anscombe
- 1 Yale University
 Department of Statistics
 New Haven, Connecticut 06520
 ATTN: Prof. L. J. Savage
- 1 Scientific Advisor Commandant of the Marine Corps (Code AX) Washington, D.C. 20360 ATTN: Dr. A. L. Slafkosky

UNCLASSIFIED SPECIAL DISTRIBUTION LIST FOR SIGNAL ANALYSIS STATISTICS

- l University of California at
 Los Angeles
 Department of Biomathematics
 Los Angeles, California 90024
 ATTN: Prof. W. J. Dixon
- 1 Colorado State University Statistics Laboratory Fort Collins, Colorado 80521 ATTN: Prof. F. A. Graybill
- 1 Cornell University
 Plant Breeding and Biometry
 337 Warren Hall
 Ithaca, New York 14850 ,
 ATTN: Prof. Walter T. Federer
- 1 University of Florida
 Department of Statistics
 Gainesville, Florida 32603
 ATTN: R. L. Scheaffer
- 1 Harvard University
 Department of Statistics
 Cambridge, Massachusetts 02138
 ATTN: Prof. Frederick Mosteller
- l University of Iowa
 Department of Statistics
 Iowa City, Iowa 52240
 ATTN: Prof. Robt. V. Hogg
- 1 Iowa State University
 Department of Statistics
 Ames, Iowa 50010
 ATTN: Prof. T. A. Bancroft
- 1 Kansas State University
 Department of Statistics
 Manhattan, Kansas 66502
 ATTN: Prof. H. C. Fryer
- 1 L.T.V. -- Dept. #4-553400
 Guidance & Control Development
 P. O. Box 6118
 Dallas, Texas 75222
 ATTN: Dr. P. R. Hendricks

- 1 System Effectiveness Section Vought Aeronautics Division L.T.V. Aerospace Corporation P. O. Box 5907 Dallas, Texas 75222 ATTN: Dr. W. W. Hoy
- 1 L.T.V. Research Center P. O. Box 6144 Dallas, Texas 75222 ATTN: Dr. F. W. Fenter
- 1 University of Southwestern Louisiana
 Department of Mathematics
 Lafayette, Louisiana 70501
 ATTN: Prof. Charles Anderson
- 1 Medical University of South Carolina
 Department of Biometry
 800 Barre Street
 Charleston, South Carolina 29401
 ATTN: Dr. F. C. Durling
- 1 Michigan State University Department of Statistics East Lansing, Michigan 48823 ATTN: Prof. Leo Katz
- 1 Naval Research Laboratory Code 5620
 Washington, D.C. 20390
 ATTN: Robert D. Misner
- 1 Department of the Navy
 Naval Ordnance Systems Command (MTEA)
 Naval Plant Representative
 General Dynamics Pomona Division
 P. O. Box 2507
 1675 West Fifth Avenue
 Pomona, California 91766
- 1 U. S. Naval Torpedo Station Keyport, Washington 98345 ATTN: Leo Morris

- l University of New Mexico
 Department of Statistics
 Albuquerque, New Mexico 87106
 ATTN: Prof. L. H. Koopmans
- 1 State University of New York
 Department of Statistics
 4230 Ridge Lea Road
 Amherst, New York 14226
 ATTN: Richard N. Schmidt
- 1 North Carolina State University
 Department of Experimental Statistics
 Raleigh, North Carolina 27607
 ATTN: Prof. C. P. Quesenberry
- 1 North Carolina State University
 Department of Experimental Statistics
 Raleigh, North Carolina 27607
 ATTN: Prof. Oscar Wesler
- 1 Oak Ridge National Laboratory
 Statistics Group
 Mathematics Division
 P. O. Box Y
 Oak Ridge, Tennessee 37831
 ATTN: Dr. Donald A. Gardiner
- 1 Office of Naval Research,
 Resident Representative
 1103 Guadalupe
 Lowich Building
 Austin, Texas 78701
 ATTN: Frank M. Lucas
- 1 Oregon State University
 Department of Statistics
 Corvallis, Oregon 97331
 ATTN: Prof. Lyle D. Calvin
- 1 Pan American College
 Department of Mathematics
 Edinburg, Texas 78539
 ATTN: Dr. A. E. Crofts, Jr.
- 1 Princeton University
 Department of Economics and
 Sociology
 Princeton, New Jersey 08540
 ATTN: Prof. O. Morgenstern

- 1 Purdue University
 Department of Statistics
 Lafayette, Indiana 47907
 ATTN: Prof. Marcel F. Neuts
 - 1 Resalab, Inc.
 540 Easy Street
 Garland, Texas 75040
 ATTN: R. W. Thompson
 - 1 University of Southern California
 Mathematics Department
 Los Angeles, California 90007
 ATTN: Prof. T. E. Harris
 - 1 Sun Oil Company 503 N. Central Expressway Richardson, Texas 75080 ATTN: Stewart F. Musket
 - 1 Texas Instruments, Inc.
 Central Research Laboratory
 M.S. 132 P. O. Box 5936
 Dallas, Texas 75222
 ATTN: Dr. Bernard H. List
 - 1 Texas Instruments, Inc.
 North Building Library
 M.S. 211 P. O. Box 6015
 Dallas, Texas 75222
 - 1 Texas Instruments, Inc.
 M.S. 17 P. O. Box 5012
 Dallas, Texas 75222
 ATTN: Robert K. Wysocki
 - 1 Texas Technological University Department of Mathematics Lubbock, Texas 79409 ATTN: Prof. H. L. Gray
 - 1 Texas Technological University Department of Mathematics Lubbock, Texas 79409 ATTN: P. L. Odell
 - 1 University of Texas
 Department of Mathematics
 Austin, Texas 78712
 ATTN: Prof. Peter John

- 1 Tracor, Inc.
 1701 Guadalupe
 Austin, Texas 78701
 ATTN: Dr. W. C. Moyer
- 1 Unitech, Inc.
 2209 Manor Road
 Austin, Texas 78722
 ATTN: Mr. Hugh Batey
- 1 United Technology Laboratories
 P. O. Box 30102
 Garland, Texas 75230
 ATTN: Dr. J. L. Poirot
- 1 University of Tulsa
 Department of Mathematics
 Tulsa, Oklahoma 74104
 ATTN: Prof. P. T. Pope
- 1 Research Triangle Institute
 Director, Statistics Division
 Research Triangle Park,
 North Carolina 27709
 ATTN: Dr. A. L. Finkner
- 1 Research Triangle Institute
 Director, Operations Research
 and Economics Division
 Research Triangle Park,
 North Carolina 27709

- 1 University of Washington Department of Mathematics Seattle, Washington 98105 ATTN: D. G. Chapman
- 1 Clemson University
 Department of Mathematics
 Clemson, South Carolina 29631
 ATTN: Prof. K. T. Wallenius
- 1 Oklahoma State University Statistical Laboratory Stillwater, Oklahoma 74075 ATTN: Dr. John L. Folks
- 1 University of Texas at Arlington
 Department of Mathematics
 Arlington, Texas 76010
 ATTN: Dr. D. D. Dyer
- 1 University of Southwestern
 Louisiana
 Department of Mathematics
 Lafayette, Louisiana 70501
 ATTN: Dr. T. L. Bratcher